Rescale SDM predictions and (if applicable) associated uncertainties
Arguments
- x
object of class
sf
- x.idx
vector of column names or column indices; indicates columns in
x
with prediction values that will be rescaled- y
rescaling method; must be either "abundance" or "sumto1". See 'Details' section for descriptions of the rescaling methods
- y.abund
numeric value; ignored if
y
is not"abundance"
- x.var.idx
vector of column names or column indices; indicates columns in
x
with variance values that will be rescaled. Ifx.var.idx
is specified, it must be the same length asx.idx
. Usex.var.idx = NULL
(the default) if none of the predictions have associated uncertainty values; see the 'Details' section for more information
Value
The sf
object x
with the columns specified by x.idx
and x.var.idx
rescaled.
The agr
attributes of x
will be conserved
Details
ensemble_rescale
is intended to be used after overlaying predictions with
overlay_sdm
and before creating ensembles with ensemble_create
.
The provided rescaling methods are:
'abundance' - Rescale the density values so that the predicted abundance is
y.abund
'sumto1' - Rescale the density values so their sum is 1
SDM uncertainty values must be rescaled differently than the prediction values.
Columns specified in x.var.idx
must contain variance values.
These values will be rescaled using the formula var(c * x) = c^2 * var(x)
,
where c
is the rescaling factor for the associated predictions.
If x.var.idx
is not NULL
, then the function assumes
x.var.idx[1]
contains the variance values associated with the predictions in x.idx[1]
,
x.var.idx[2]
contains the variance values associated with the predictions in x.idx[2]
, etc.
Use NA
in x.var.idx
to indicate a set of predictions that does not have
associated uncertainty values (e.g., x.var.idx = c(4, NA, 5)
)
Examples
ensemble_rescale(preds.1, c("Density", "Density2"), "abundance", 50)
#> Simple feature collection with 325 features and 4 fields
#> Attribute-geometry relationships: constant (4)
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: -123 ymin: 32 xmax: -117 ymax: 35.03686
#> Geodetic CRS: WGS 84
#> First 10 features:
#> Density Density2 Var1 Var2
#> 1 8.014377e-05 0.0003903286 0.004881167 5.813315e-04
#> 2 1.242396e-05 0.0002700312 0.008067182 4.260565e-04
#> 3 2.915252e-05 0.0001959982 0.002044914 8.936224e-03
#> 4 1.282508e-05 0.0003877259 0.004061446 4.281218e-04
#> 5 1.617261e-05 0.0003516557 0.009396155 6.683912e-03
#> 6 2.064470e-05 0.0004962905 0.008085898 9.530925e-05
#> 7 1.037307e-05 0.0001445535 0.008159037 6.253449e-03
#> 8 1.276524e-05 0.0005284574 0.008667279 1.936805e-03
#> 9 1.882351e-05 0.0001335137 0.001207384 4.332171e-03
#> 10 6.514596e-05 0.0002387673 0.003063388 7.799161e-03
#> geometry
#> 1 POLYGON ((-123 32, -122.875...
#> 2 POLYGON ((-122.625 32.00828...
#> 3 POLYGON ((-122.375 32.01319...
#> 4 POLYGON ((-122.125 32.0176,...
#> 5 POLYGON ((-121.875 32.02153...
#> 6 POLYGON ((-121.625 32.02496...
#> 7 POLYGON ((-121.375 32.0279,...
#> 8 POLYGON ((-121.125 32.03036...
#> 9 POLYGON ((-120.875 32.03232...
#> 10 POLYGON ((-120.625 32.03379...
ensemble_rescale(preds.1, c(1, 2), "sumto1")
#> Simple feature collection with 325 features and 4 fields
#> Attribute-geometry relationships: constant (4)
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: -123 ymin: 32 xmax: -117 ymax: 35.03686
#> Geodetic CRS: WGS 84
#> First 10 features:
#> Density Density2 Var1 Var2
#> 1 0.0009493594 0.004478398 0.004881167 5.813315e-04
#> 2 0.0001471706 0.003098178 0.008067182 4.260565e-04
#> 3 0.0003453322 0.002248767 0.002044914 8.936224e-03
#> 4 0.0001519221 0.004448537 0.004061446 4.281218e-04
#> 5 0.0001915759 0.004034689 0.009396155 6.683912e-03
#> 6 0.0002445511 0.005694143 0.008085898 9.530925e-05
#> 7 0.0001228764 0.001658521 0.008159037 6.253449e-03
#> 8 0.0001512133 0.006063207 0.008667279 1.936805e-03
#> 9 0.0002229778 0.001531857 0.001207384 4.332171e-03
#> 10 0.0007716998 0.002739474 0.003063388 7.799161e-03
#> geometry
#> 1 POLYGON ((-123 32, -122.875...
#> 2 POLYGON ((-122.625 32.00828...
#> 3 POLYGON ((-122.375 32.01319...
#> 4 POLYGON ((-122.125 32.0176,...
#> 5 POLYGON ((-121.875 32.02153...
#> 6 POLYGON ((-121.625 32.02496...
#> 7 POLYGON ((-121.375 32.0279,...
#> 8 POLYGON ((-121.125 32.03036...
#> 9 POLYGON ((-120.875 32.03232...
#> 10 POLYGON ((-120.625 32.03379...
ensemble_rescale(
preds.1, c("Density", "Density2"), "abundance", 100, c(3,4)
)
#> Simple feature collection with 325 features and 4 fields
#> Attribute-geometry relationships: constant (4)
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: -123 ymin: 32 xmax: -117 ymax: 35.03686
#> Geodetic CRS: WGS 84
#> First 10 features:
#> Density Density2 Var1 Var2
#> 1 1.602875e-04 0.0007806571 3.807013e-09 7.130261e-10
#> 2 2.484793e-05 0.0005400624 6.291912e-09 5.225751e-10
#> 3 5.830505e-05 0.0003919964 1.594909e-09 1.096063e-08
#> 4 2.565017e-05 0.0007754518 3.167681e-09 5.251084e-10
#> 5 3.234522e-05 0.0007033113 7.328429e-09 8.198083e-09
#> 6 4.128941e-05 0.0009925810 6.306508e-09 1.169006e-10
#> 7 2.074615e-05 0.0002891069 6.363553e-09 7.670103e-09
#> 8 2.553049e-05 0.0010569148 6.759950e-09 2.375568e-09
#> 9 3.764703e-05 0.0002670274 9.416861e-10 5.313579e-09
#> 10 1.302919e-04 0.0004775345 2.389256e-09 9.565980e-09
#> geometry
#> 1 POLYGON ((-123 32, -122.875...
#> 2 POLYGON ((-122.625 32.00828...
#> 3 POLYGON ((-122.375 32.01319...
#> 4 POLYGON ((-122.125 32.0176,...
#> 5 POLYGON ((-121.875 32.02153...
#> 6 POLYGON ((-121.625 32.02496...
#> 7 POLYGON ((-121.375 32.0279,...
#> 8 POLYGON ((-121.125 32.03036...
#> 9 POLYGON ((-120.875 32.03232...
#> 10 POLYGON ((-120.625 32.03379...