Calculate AUC, TSS, and RMSE for given density predictions and validation data
Arguments
- x
object of class sf; SDM predictions
- x.idx
name or index of column in
xwith prediction values- y
object of class sf; validation data
- y.idx
name or index of column in
ywith validation data. This validation data column must have at least two unique values, e.g. 0 and 1- count.flag
logical;
TRUEindicates that the data in columny.idxis count data, whileFALSEindicates that the data is presence/absence. See details for differences in data processing based on this flag.
Value
A numeric vector with AUC, TSS and RMSE values, respectively.
If count.flag == FALSE, the RMSE value will be NA
Details
If count.flag == TRUE, then eSDM::model_abundance(x, x.idx, FALSE) will be run
to calculate predicted abundance and thus calculate RMSE.
Note that this assumes the data in column x.idx of x are density values.
If count.flag == FALSE, then all of the values in column y.idx of y must be 0 or 1.
All rows of x with a value of NA in column x.idx and
all rows of y with a value of NA in column y.idx are removed before calculating metrics
Examples
evaluation_metrics(preds.1, 2, validation.data, "sight")
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> [1] 0.3333333 0.2000000 NA
evaluation_metrics(preds.1, "Density2", validation.data, "count", TRUE)
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> [1] 0.3333333 0.2000000 404.3105603