Summarize number of sightings and animals for selected species by segment
Arguments
- x.list
output of
das_effort
; a list of three data frames named 'segdata', 'sightinfo', and 'randpicks', respectively- sp.codes
character; species code(s) to include in segdata output. These must exactly match the species codes in the data, such as including leading zeros
- sp.events
character; event code(s) to include in the sightinfo output. This argument supersedes the 'included' value when determining whether a sighting is included in the segment summaries. Must be one or more of: "S", "K", "M", "G", "t", "p" (case-sensitive). The default is that all of these event codes are kept
- gs.columns
character; the column(s) to use to get the group size values that will be summarized in the segdata output. Must be one or more of 'GsSpBest', 'GsSpLow', and 'GsSpBest' (case-sensitive). See Details section for more information
Value
A list, identical to x.list
except for
1) the nSI and ANI columns added to x.list$segdata
,
one each for each element of sp.codes
, and
2) the 'included' column of x.list$sightinfo
, which has been set as
FALSE
for sightings of species not listed in sp.codes
.
Thus, the 'included' column in the output accurately reflects
the sightings that were included in the effort segment summaries
Details
This function takes the output of das_effort
and
adds columns for the number of sightings (nSI) and number of animals (ANI)
for selected species (selected via sp.codes
) for each segment
to the segdata element of x.list
.
However, only sightings with an included value of TRUE
(included is a column in sightinfo) are included in the summaries.
Having this step separate from das_effort
allows users to
personalize the included values as desired for their analysis.
The ANI columns are the sum of the 'GsSp...' column(s) from
das_sight
specified using gs.columns
.
If gs.columns
specifies more than one column,
then the secondary columns will only be used if
the values for the previous columns are NA
.
For instance, if gs.columns = c('GsSpBest', 'GsSpLow')
,
then for each row in sightinfo, the value from GsSpLow
will be used only if the value from GsSpBest is NA
Examples
y <- system.file("das_sample.das", package = "swfscDAS")
y.proc <- das_process(y)
y.eff.cond <- das_effort(
y.proc, method = "condition", conditions = "Bft", seg.min.km = 0.05,
num.cores = 1
)
das_effort_sight(y.eff.cond, sp.codes = c("013", "076", "DC"), sp.events = c("S", "t"))
#> $segdata
#> segnum section_id section_sub_id file stlin endlin lat1
#> 1 1 1 1 das_sample.das 2 20 39.32033
#> 2 2 2 1 das_sample.das 23 43 39.37617
#> 3 3 3 1 das_sample.das 59 70 39.56800
#> 4 4 3 2 das_sample.das 70 90 39.66133
#> 5 5 4 1 das_sample.das 99 121 39.94517
#> 6 6 5 1 das_sample.das 127 147 40.15217
#> 7 7 6 1 das_sample.das 150 160 40.26867
#> 8 8 6 2 das_sample.das 160 164 40.32033
#> 9 9 7 1 das_sample.das 167 174 40.38250
#> 10 10 7 2 das_sample.das 174 181 40.42965
#> 11 11 8 1 das_sample.das 188 199 40.52200
#> 12 12 9 1 das_sample.das 232 240 40.98717
#> 13 13 10 1 das_sample.das 242 259 41.02383
#> lon1 DateTime1 lat2 lon2 DateTime2
#> 1 -137.6043 2013-01-13 06:27:39 39.36716 -137.5817 2013-01-13 06:46:25
#> 2 -137.5978 2013-01-13 06:58:04 39.51933 -137.5277 2013-01-13 07:57:05
#> 3 -137.4530 2013-01-13 09:22:13 39.66133 -137.4130 2013-01-13 09:59:50
#> 4 -137.4130 2013-01-13 09:59:50 39.75433 -137.4107 2013-01-13 10:36:27
#> 5 -137.3692 2013-01-13 11:51:51 40.12745 -137.2488 2013-01-13 13:16:38
#> 6 -137.1737 2013-01-13 13:50:07 40.26617 -137.1348 2013-01-13 14:38:13
#> 7 -137.1268 2013-01-13 14:59:19 40.32033 -137.1108 2013-01-13 15:20:26
#> 8 -137.1108 2013-01-13 15:20:26 40.37596 -137.0915 2013-01-13 15:43:08
#> 9 -137.0977 2013-01-13 15:58:41 40.42965 -137.0745 2013-01-13 16:20:02
#> 10 -137.0745 2013-01-13 16:20:02 40.45133 -137.0628 2013-01-13 16:29:50
#> 11 -137.0533 2013-01-13 16:59:54 40.52533 -137.0515 2013-01-13 17:01:21
#> 12 -135.5980 2013-01-14 11:24:32 41.01582 -135.5782 2013-01-14 11:37:24
#> 13 -135.5743 2013-01-14 11:40:38 41.04599 -135.5595 2013-01-14 11:50:29
#> mlat mlon mDateTime dist year month day mtime
#> 1 39.34377 -137.5930 2013-01-13 06:37:02 5.5577 2013 1 13 06:37:02
#> 2 39.44767 -137.5625 2013-01-13 07:27:34 17.0106 2013 1 13 07:27:34
#> 3 39.61458 -137.4326 2013-01-13 09:41:01 10.9225 2013 1 13 09:41:01
#> 4 39.70804 -137.3939 2013-01-13 10:18:08 10.8861 2013 1 13 10:18:08
#> 5 40.03679 -137.3101 2013-01-13 12:34:14 22.7090 2013 1 13 12:34:14
#> 6 40.20895 -137.1531 2013-01-13 14:14:10 13.0922 2013 1 13 14:14:10
#> 7 40.29448 -137.1187 2013-01-13 15:09:52 5.8993 2013 1 13 15:09:52
#> 8 40.34833 -137.1019 2013-01-13 15:31:47 6.4018 2013 1 13 15:31:47
#> 9 40.40618 -137.0864 2013-01-13 16:09:21 5.5964 2013 1 13 16:09:21
#> 10 40.44053 -137.0687 2013-01-13 16:24:56 2.6020 2013 1 13 16:24:56
#> 11 40.52365 -137.0524 2013-01-13 17:00:37 0.4016 2013 1 13 17:00:37
#> 12 41.00151 -135.5881 2013-01-14 11:30:58 3.5940 2013 1 14 11:30:58
#> 13 41.03500 -135.5671 2013-01-14 11:45:33 2.7600 2013 1 14 11:45:33
#> Cruise Mode EffType ESWsides maxdistBft nSI_013 ANI_013 nSI_076 ANI_076
#> 1 1000 C S 2 3 0 0.00 0 0
#> 2 1000 C S 2 3 0 0.00 1 8
#> 3 1000 C S 2 3 0 0.00 0 0
#> 4 1000 C S 2 2 0 0.00 0 0
#> 5 1000 C S 2 3 0 0.00 0 0
#> 6 1000 C S 2 3 0 0.00 0 0
#> 7 1000 C S 2 3 0 0.00 0 0
#> 8 1000 C S 2 2 0 0.00 0 0
#> 9 1000 C S 2 3 0 0.00 0 0
#> 10 1000 C S 2 2 0 0.00 0 0
#> 11 1000 C S 2 2 1 30.06 0 0
#> 12 1000 C S 2 2 0 0.00 0 0
#> 13 1000 C S 2 2 0 0.00 0 0
#> nSI_DC ANI_DC
#> 1 0 0
#> 2 0 0
#> 3 0 0
#> 4 0 0
#> 5 0 0
#> 6 0 0
#> 7 0 0
#> 8 0 0
#> 9 0 0
#> 10 0 0
#> 11 0 0
#> 12 0 0
#> 13 0 0
#>
#> $sightinfo
#> segnum mlat mlon Event DateTime year Lat Lon
#> 1 1 39.34377 -137.5930 S 2013-01-13 06:46:02 2013 39.36617 -137.5820
#> 2 2 39.44767 -137.5625 S 2013-01-13 07:56:22 2013 39.51767 -137.5285
#> 3 3 39.61458 -137.4326 t 2013-01-13 09:34:27 2013 39.59733 -137.4400
#> 4 6 40.20895 -137.1531 t 2013-01-13 14:02:55 2013 40.18283 -137.1622
#> 5 6 40.20895 -137.1531 S 2013-01-13 14:37:56 2013 40.26567 -137.1350
#> 6 8 40.34833 -137.1019 t 2013-01-13 15:36:47 2013 40.36050 -137.0978
#> 7 10 40.44053 -137.0687 S 2013-01-13 16:29:50 2013 40.45133 -137.0628
#> 8 11 40.52365 -137.0524 S 2013-01-13 17:00:45 2013 40.52400 -137.0522
#> 9 11 40.52365 -137.0524 S 2013-01-13 17:00:45 2013 40.52400 -137.0522
#> 10 13 41.03500 -135.5671 S 2013-01-14 11:47:51 2013 41.04017 -135.5635
#> 11 13 41.03500 -135.5671 S 2013-01-14 11:47:51 2013 41.04017 -135.5635
#> 12 13 41.03500 -135.5671 S 2013-01-14 11:49:14 2013 41.04333 -135.5615
#> 13 13 41.03500 -135.5671 S 2013-01-14 11:49:14 2013 41.04333 -135.5615
#> OnEffort Cruise Mode OffsetGMT EffType ESWsides Course SpdKt Bft SwellHght
#> 1 TRUE 1000 C 5 S 2 25 10.2 3 3
#> 2 TRUE 1000 C 5 S 2 26 9.7 3 3
#> 3 TRUE 1000 C 5 S 2 27 9.0 3 3
#> 4 TRUE 1000 C 5 S 2 20 9.3 3 3
#> 5 TRUE 1000 C 5 S 2 20 9.3 3 3
#> 6 TRUE 1000 C 5 S 2 16 8.9 2 3
#> 7 TRUE 1000 C 5 S 2 25 8.9 2 3
#> 8 TRUE 1000 C 5 S 2 30 9.5 2 3
#> 9 TRUE 1000 C 5 S 2 30 9.5 2 3
#> 10 TRUE 1000 C 5 S 2 23 9.6 2 1
#> 11 TRUE 1000 C 5 S 2 23 9.6 2 1
#> 12 TRUE 1000 C 5 S 2 23 9.6 2 1
#> 13 TRUE 1000 C 5 S 2 23 9.6 2 1
#> WindSpdKt RainFog HorizSun VertSun Glare Vis ObsL Rec ObsR ObsInd EffortDot
#> 1 10 1 NA NA NA 6.0 208 280 001 <NA> TRUE
#> 2 10 3 2 2 FALSE 5.5 125 208 280 <NA> TRUE
#> 3 10 1 2 2 FALSE 5.5 001 126 149 <NA> TRUE
#> 4 6 1 8 1 FALSE 6.0 280 001 126 <NA> TRUE
#> 5 6 1 8 1 FALSE 6.0 280 001 126 <NA> TRUE
#> 6 6 1 9 1 FALSE 6.0 125 208 280 <NA> TRUE
#> 7 6 1 8 2 FALSE 6.0 149 125 208 <NA> TRUE
#> 8 6 1 8 2 FALSE 6.0 126 149 125 <NA> TRUE
#> 9 6 1 8 2 FALSE 6.0 126 149 125 <NA> TRUE
#> 10 5 3 NA NA NA 4.0 149 125 208 <NA> TRUE
#> 11 5 3 NA NA NA 4.0 149 125 208 <NA> TRUE
#> 12 5 3 NA NA NA 4.0 149 125 208 <NA> TRUE
#> 13 5 3 NA NA NA 4.0 149 125 208 <NA> TRUE
#> EventNum file_das line_num SightNo Subgroup SightNoDaily Obs ObsStd
#> 1 15 das_sample.das 15 1406 <NA> 20130113_1 208 TRUE
#> 2 35 das_sample.das 38 1407 <NA> 20130113_2 125 TRUE
#> 3 59 das_sample.das 65 <NA> <NA> <NA> 280 FALSE
#> 4 131 das_sample.das 137 <NA> <NA> <NA> 228 FALSE
#> 5 136 das_sample.das 142 1408 <NA> 20130113_3 280 TRUE
#> 6 153 das_sample.das 162 <NA> <NA> <NA> 231 FALSE
#> 7 167 das_sample.das 176 1409 <NA> 20130113_4 149 TRUE
#> 8 181 das_sample.das 193 1410 <NA> 20130113_5 125 TRUE
#> 9 181 das_sample.das 193 1410 <NA> 20130113_5 125 TRUE
#> 10 18 das_sample.das 248 1412 <NA> 20130114_1 149 TRUE
#> 11 18 das_sample.das 248 1412 <NA> 20130114_1 149 TRUE
#> 12 20 das_sample.das 252 1413 <NA> 20130114_2 208 TRUE
#> 13 20 das_sample.das 252 1413 <NA> 20130114_2 208 TRUE
#> Bearing Reticle DistNm Cue Method Photos Birds CalibSchool PhotosAerial
#> 1 309 2.8 1.06 3 4 N N <NA> <NA>
#> 2 326 0.4 2.97 3 4 Y N <NA> <NA>
#> 3 120 NA 0.03 NA NA <NA> <NA> <NA> <NA>
#> 4 300 NA 0.02 NA NA <NA> <NA> <NA> <NA>
#> 5 270 14.0 0.28 3 4 N N <NA> <NA>
#> 6 45 NA 0.05 NA NA <NA> <NA> <NA> <NA>
#> 7 344 0.2 3.68 3 4 Y Y <NA> <NA>
#> 8 70 1.4 1.66 3 4 Y N <NA> <NA>
#> 9 70 1.4 1.66 3 4 Y N <NA> <NA>
#> 10 359 0.3 3.28 2 4 Y N <NA> <NA>
#> 11 359 0.3 3.28 2 4 Y N <NA> <NA>
#> 12 38 0.8 2.23 3 4 Y N <NA> <NA>
#> 13 38 0.8 2.23 3 4 Y N <NA> <NA>
#> Biopsy Prob nSp Mixed SpCode SpCodeProb GsSchoolBest GsSchoolHigh
#> 1 <NA> FALSE 1 FALSE 018 <NA> NA NA
#> 2 <NA> FALSE 1 FALSE 076 <NA> 8.00000 14.00
#> 3 <NA> NA NA NA LV <NA> 1.00000 NA
#> 4 <NA> NA NA NA DC <NA> 1.00000 NA
#> 5 <NA> FALSE 1 FALSE 037 <NA> 10.66667 20.00
#> 6 <NA> NA NA NA DC <NA> 1.00000 NA
#> 7 <NA> FALSE 1 FALSE 016 <NA> 46.66667 79.00
#> 8 <NA> FALSE 2 TRUE 013 <NA> 41.75000 72.75
#> 9 <NA> FALSE 2 TRUE 016 <NA> 41.75000 72.75
#> 10 <NA> FALSE 2 TRUE 018 <NA> 151.50000 249.00
#> 11 <NA> FALSE 2 TRUE 277 <NA> 151.50000 249.00
#> 12 <NA> TRUE 2 TRUE 016 016 21.25000 37.75
#> 13 <NA> TRUE 2 TRUE 277 016 21.25000 37.75
#> GsSchoolLow GsSpBest GsSpHigh GsSpLow CourseSchool TurtleJFR TurtleAge
#> 1 42.333333 NA NA 42.333333 NA <NA> <NA>
#> 2 5.666667 8.00000 14.0000 5.666667 NA <NA> <NA>
#> 3 NA 1.00000 NA NA NA <NA> A
#> 4 NA 1.00000 NA NA NA <NA> J
#> 5 10.666667 10.66667 20.0000 10.666667 NA <NA> <NA>
#> 6 NA 1.00000 NA NA NA <NA> A
#> 7 46.666667 46.66667 79.0000 46.666667 NA <NA> <NA>
#> 8 41.750000 30.06000 52.3800 30.060000 NA <NA> <NA>
#> 9 41.750000 11.69000 20.3700 11.690000 NA <NA> <NA>
#> 10 151.500000 128.77500 211.6500 128.775000 NA <NA> <NA>
#> 11 151.500000 22.72500 37.3500 22.725000 NA <NA> <NA>
#> 12 21.250000 15.08750 26.8025 15.087500 NA <NA> <NA>
#> 13 21.250000 6.16250 10.9475 6.162500 NA <NA> <NA>
#> TurtleCapt PerpDistKm included
#> 1 <NA> 1.52563078 FALSE
#> 2 <NA> 3.07580701 TRUE
#> 3 N 0.04811637 FALSE
#> 4 N 0.03207758 FALSE
#> 5 <NA> 0.51856000 FALSE
#> 6 <NA> 0.06547809 FALSE
#> 7 <NA> 1.87856781 FALSE
#> 8 <NA> 2.88891582 TRUE
#> 9 <NA> 2.88891582 FALSE
#> 10 <NA> 0.10601569 FALSE
#> 11 <NA> 0.10601569 FALSE
#> 12 <NA> 2.54265727 FALSE
#> 13 <NA> 2.54265727 FALSE
#>
#> $randpicks
#> NULL
#>